

Topic: Information Age Transformation

Title: Suitability of Agent Technology for Military Command and Control in the Future Combat
System Environment

Thomas Potok1, Laurence Phillips2, Robert Pollock2, and Andy Loebl1

1Oak Ridge National Laboratory
Post Office Box 2008, Mail Stop 6414
Computational Sciences and Engineering Division
Oak Ridge, Tennessee 37831-6414
Phone: 865-574-0834
Fax: 865-241-6211
potokte@ornl.gov

2Sandia National Laboratories, New Mexico
PO Box 5800, Mail Stop 0455
Advanced Information and Control Systems
Albuquerque, New Mexico 87185-0455
Phone: 505-845-8846
Fax: 505-844-9641
lrphill@sandia.gov

Point of contact: Thomas Potok

 Page 1 of 21

mailto:potokte@ornl.gov
mailto:lrphill@sandia.gov

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JUN 2003 2. REPORT TYPE

3. DATES COVERED
 00-00-2003 to 00-00-2003

4. TITLE AND SUBTITLE
Suitability of Agent Technology for Military Command and Control in
the Future Combat System Environment

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Oak Ridge National Laboratory,Computational Sciences and Engineering
Division,PO Box 2008 Mail Stop 6414,Oak Ridge,TN,37831-6414

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

40

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Suitability of Agent Technology for Military Command and Control in
the Future Combat System Environment

Thomas Potok1, Laurence Phillips2, Robert Pollock2, and Andy Loebl1

1Oak Ridge National Laboratory
Post Office Box 2008, Mail Stop 6414

Computational Sciences and Engineering
Division

Oak Ridge, Tennessee 37831-6414
Phone: 865-574-0834
Fax: 865-241-6211
potokte@ornl.gov

2Sandia National Laboratories, New Mexico
PO Box 5800, Mail Stop 0455

Advanced Information and Control Systems
Albuquerque, New Mexico 87185-0455

Phone: 505-845-8846
Fax: 505-844-9641
lrphill@sandia.gov

Abstract
The U.S. Army is faced with the challenge of dramatically improving its war fighting capability
through advanced technologies. The focus of this paper is to assess the novelty and maturity of
agent technology for use in the Future Combat System (FCS). FCS will rely on networked
command and control (C2) to transform from the historically centralized C2 function. Achieving
a networked C2 capability will require breakthroughs in current software technology.

We have developed a set of software requirements for FCS based on military requirements for
this system. We have then evaluated these software requirements against current computer
science technology. From this analysis we find that existing technologies will not likely be
sufficient to meet the networked C2 requirements of FCS due to limitations in scalability,
mobility, and security.

However, agent technology provides a number of advantages in these areas, mainly through
much stronger messaging and coordination models. These advantages have the potential for
significant improvements in scalability, mobility, and security. We believe that agent technology
has the capability to support most of the networked C2 requirements of FCS. However, we would
recommend proof of principle experiments to verify the theoretical advantages of this technology
in an FCS environment.

1 Introduction
The U.S. Army’s new concept for the future combat system (FCS) describes forces that must be
“flexible, effective and efficient multi-mission forces capable of projecting overwhelming
military power worldwide” [1] across the full spectrum of engagement. This “system of systems”
will include networked command and control (C2) capabilities designed for future missions,
which is a significant departure from the historically centralized C2 system. Before this new
networked C2 capability can be achieved, several major technical challenges must be overcome.
The goal of this paper is to highlight the significant new software requirements of such a system
and to determine whether software agent technology is a suitable means of addressing these
technical challenges.

The FCS C2 system is a revolutionary approach to provide network-centric C2 with dedicated
battlespace visibility and support for a completely integrated intelligence, surveillance, and
reconnaissance (ISR) capability. The system is to be built within an Objective Force consisting

 Page 2 of 21

mailto:potokte@ornl.gov
mailto:lrphill@sandia.gov

of a family of autonomous and non-autonomous vehicles expected to assure command of a
battlespace tens of kilometers wide, in three-dimensional space, vertically integrated, and
effectively interoperable among allied and joint forces.

The complexity of the future war fighting environment will require that information be securely
and reliably transmitted over dynamic and potentially unreliable virtual and physical networks.
Data from a wide range of systems and sensors need to be fused, analyzed, and summarized to
help support rapid and effective decision-making.

Creating software to manage this modern C2 functionality provides a number of significant
computer science challenges. For such a complex system to be developed within any reasonable
time frame, improvements in software development productivity and quality are needed. Indeed,
it is unclear whether the technology to create such a system is available today. However, many
have suggested that agent technology and its emerging software development conventions and
environment may provide the strongest capability for solving such a substantive development
problem [2].

The goal of this paper is to address those technologies that seem suitable for building this C2
environment for FCS, particularly agent technology. We begin (Section 3) with a background
review of the networked C2 challenge in an FCS environment, in the process also developing a
set of software requirements for such a system. We then analyze the networked C2 requirements
against the current state-of-the-art non-agent-based software technology to develop a list of
limitations in the current technology (Section 4). In Section 5, we review these limitations
against agent technology and explore the potential of this technology. Section 6 describes briefly
several current agent-based systems of particular relevance given FCS requirements. The final
sections provide recommendations and conclusions on the suitability of agent technology in
creating the environment for the envisioned C2 of the Army’s FCS.

2 Background

2.1 Command and Control (C2) Evolution
According to U.S. Army leadership, the main enhancement of the FCS C2 system is that it will
be network-centric at its core [3]. Historically, C2 has been centralized—i.e., intelligence has
been sent to a central location where military decisions are generated and from which C2
emanates. Typically, decision makers have relied on centralized C2 structures and adequate time
to make and transmit decisions. As the operational tempo of war increases to allow modern
forces to succeed, the older concepts of C2 become a liability to forces in the battlespace.

The concept of decentralized control and centralized command is not new, having been used by
the Greeks, Trojans, and Romans, as well as in recent warfare. However, the revolutionary
concept of networked command is so recent as to seem visionary and can now be considered
only because of advances in information technology. This paper addresses how and when such
technology can be applied given its limitations. In order to decentralize command, intelligence
gathering and analysis must be available at lower levels in the military hierarchy [4]. Figure 1
depicts a notional information network of the sort required to support a decentralized C2
environment.

 Page 3 of 21

Figure 1 The FCS concept of networked command and control.

The FCS concept implies that data will be produced by a very large number of sources—every
human and most machines involved in an FCS operation—and shared among a very large
number of entities, vertically integrated, and so broadly federated as to define interoperability in
a new venue.

2.2 C2 Requirements
Although FCS requirements have not been fully defined at the time of this writing, information
from a U.S. Army Training and Doctrine Command (TRADOC) briefing, reproduced as items 1–
7 below, describes the functional requirements of the FCS C2 system [5]. We use these
requirements to develop a list of software capabilities that are required to support the FCS C2
system. We then use these software capabilities as a basis for evaluation and comparison. Each
numbered item from the TRADOC briefing, shown in italics, is followed by an analysis of the
capabilities and behaviors the numbered item would demand of the software supporting it.

1. Collect, display and disseminate a seamless, fully integrated, multidimensional, and
tailorable common operating picture; and precision geospatial environment information
layers (modifiable digital overlays) which support cognitive and dynamic mission
planning/rehearsal, thus creating a real-time virtual decision making capability based on the
commander’s and battle staff’s detailed “knowledge” of the friendly, enemy and physical
environment.

To meet the first functional requirement, the software system must maintain a real-time,
easy-to-understand, and accurate Common Operating Picture (COP). This implies that the
volume of information distributed throughout the battlefield sensors and systems network
must be rapidly and accurately integrated, then analyzed and organized to support military
decisions. For a COP to be common, it must either be 1) produced in one place and
distributed, or 2) produced wherever needed using distributed information. The first approach
calls for centralized command, and becomes an obvious bottleneck, where delays or failure
limit or prevent access to an up-to-date COP. The second approach has no such bottleneck. In

 Page 4 of 21

such a system, the FCS software system would act to provide the information needed to
construct the COP over the C2 network. There would be no central creation point whose
destruction would prevent the COP from being formed, and the FCS system would degrade
gracefully under component destruction or failure since no component or group of
components is responsible for the COP. All FCS components would act to provide COP
information to the network where any site with COP formation capability can produce its
own COP.

2. Enable battle command on the move supported by C4ISR architecture for continuous
estimate of the situation on the move. Share integrated common operating picture to enable
visualization and dissemination of tactical scheme by combined arms mission orders with
graphic overlays. Changes in leadership that occur during battle will be automatically
disseminated to appropriate levels with shared COP to enable continuity of command.

This second functional requirement expands on the first by adding the capability of mobile
command, decision making, and ISR. To meet this functional requirement, the system
software must have the ability to move command securely from one future combat vehicle
and/or commander to another. This type of command requires that FCS system software
support the ability to deliver orders when one or more of the participants are moving. This
function would also have to be tightly integrated with the physical C2 network.

3. Objective force units must contain a mission-centric, embedded information system that
enables commanders to effectively lead during dynamically changing and offensive
operations anywhere on the battlefield. This includes the following tasks.

a. They must maintain situational understanding at all times. This is greater that just
providing fused sensor data to provide the red and blue COP. It includes that capability
to collaborate with subject matter experts, subordinate commanders and staff in real time
in order to develop a complete appreciation of the situation.

b. They must identify schemes of maneuver, opportunities, decisive points, terrain and
weather updates, enemy vulnerabilities, and conceptualize solutions through accelerated
collaborative planning, rehearsal and simulation.

c. They must make reasoned decisions based on information available. The commander will
be able to leverage intelligent agents in his information systems to assist him in filtering
through the vast amount of information so that he only focuses on the most pertinent
items to assist in his decision making process.

d. Commanders will direct decisive action through communicating orders, intent and
supporting operational graphics from the commander’s battle command system.

e. Commanders will synchronize maneuver, fires and RSTA [reconnaissance, surveillance,
targeting and acquisition]

Requirement 3 adds the concept of mission-centric situational understanding in a dynamic
environment where the participants in command operations are not only mobile but also in
different locations. To meet this requirement, the C2 software and supporting ISR resources
must be able to rapidly and accurately acquire and fuse mission-relevant data, then assist in
analyzing and summarizing the data, and finally help to support command decisions.

4. Commanders and battle staffs will leverage automated cognitive decision aids and real-time
collaborative planning support tools to achieve knowledge-based course(s) of action

 Page 5 of 21

development. Systems must be mobile, fully interoperable in the joint multinational, and
interagency environment.

Requirement 4 poses a significant technical challenge in the area of decision support and
security. We believe that commanders and their forces will use the most effective technology
available to help plan and make decisions. However, many significant issues must be
overcome in the area of decision support and collaborative planning [6]. In addition to this is
the security challenge of sharing information at various levels of classification with various
other joint and allied and even coalition forces, ensuring that it does not get corrupted by, or
fall into the hands of, an enemy.

5. [The mission-centric, embedded information system] will provide [a] digital 3D mapping
tool for high terrain resolution to enable C2 of small unit tactical action in close, complex
terrain; virtual rehearsals; and terrain analysis. Also allows visualization of inside buildings
and subterranean dimension.

Requirement 5 adds three-dimensional (3D) and geospatial visualization to the FCS C2
system concept. These features will require the software to perform very complex data
analysis, summarization, and transformation so that it can be viewed in a comprehensive and
understandable way. Creating two-dimensional (2D) images of large amounts of data is a
difficult problem; 3D portrayal dictates significant additional complexity.

6. [The mission-centric, embedded information system] will enable continuous mission
planning from alert through deployment to employment. Support continuous mission
planning, rehearsal, battle command, and ability to integrate into gaining theater command
during movement by air, land, and sea.

This sixth functional requirement is closely aligned with the second requirement, command
on the move, and the fourth requirement, real-time collaborative planning support and
course-of-action development. This item adds no new software requirements to the FCS C2
system. It emphasizes that the other requirements must be met continuously, regardless of
transport mode, beginning at first alert and ending some time after force stand-down and
postmortem mission analysis.

7. Enable command and control needed to synchronize fire, maneuver, and RSTA in real time to
close with and destroy the enemy.

In an environment where command and control are decentralized, it becomes necessary to
coordinate and synchronize activities. This requirement’s use of the word “synchronize”
implies temporal requirements and constraints for all C2 functions. We assume that it must be
possible to include these concerns during planning and course-of-action development,
although this is not explicitly stated.

2.3 C2 Requirements Analysis
To satisfy the requirements as analyzed above, the networked FCS C2 concept will need to be
based on significant software technology advances in scalability, mobility, and security. The
emerging FCS concept of C2 activities will no longer be performed in a centralized manner, but
over a dynamic network of moving vehicles, and will be dependent on a vast array of sensors to
gather data from the battlefield. This new C2 network will be created in an ad hoc fashion, with
nodes entering and leaving the network at unpredictable times. The C2 system must be highly

 Page 6 of 21

reliable and highly secure. The battlefield sensor information, vital to C2, will be broadcast from
potentially thousands of locations. This proposed FCS C2 network must be able to process this
information rapidly and deliver the right information to the right locations and people at the right
time.

As developed above, this system provides a number of new software challenges that we have
summarized in the following list:

1. Distributed computing over an unreliable, ad hoc, dynamic physical network

2. Fault tolerance over a system in which, at any given time, it is unclear what nodes are
available within the network

3. Network security and accessibility. Warfighters will need immediate access to the
network, but adversaries need to be prevented from accessing or corrupting it.

4. Data fusion. Data from a wide range of systems and sensors will need to be correctly
related

5. Information analysis and summary of enormous amounts of data from the C2 network on
the basis of user needs

6. Decision support. A network capable of supporting C2 decision making

7. Software development improvements to reduce the complexity and risk in creating the
proposed system

Figure 2 provides a schematic mapping the TRADOC FCS functional requirements to the
expected software requirements. Clearly, this is not an exhaustive list of C2 requirements.
However, we believe that the list is representative of the challenges placed on software of the
networked C2. In the next section, we evaluate how software technologies are equipped to meet
these challenges.

Software

Requirements

TRADOC
Requirements D

is
tri

bu
te

d
C

om
pu

tin
g

Fa
ul

t T
ol

er
an

ce

S
ec

ur
ity

M
ob

ile
 C

od
e

In
fo

rm
at

io
n

Fu
si

on

In
fo

rm
at

io
n

A
na

ly
si

s
S

um
m

ar
y

D
ec

is
io

n
S

up
po

rt

S
of

tw
ar

e
P

ro
du

ct
iv

ity

Common Operational Picture X X X X X X X

Mobile Command X X X X

Mission-Centric IS X X X X X X

Decision Support/Planning X X X X X

3D Visualizations X

Continuous Mission Planning X X X

Synchronized C2 X X X X

Figure 2 A mapping of TRADOC FCS functional requirements
to expected software requirements.

 Page 7 of 21

3 State-of-the-Art Software Technology
Software development methods have been transformed over the years from structured analysis
methods, where processing and data were kept separate [7], to object-oriented methods, where
processing and data are combined into software entities called objects [8]. Object technology has
been further enhanced with distributed capabilities, allowing an object on one system to
communicate with objects on other systems [9]. There is also the capability for an object to be
transmitted across a trusted network and executed on another computer, a technique commonly
known as mobile code [10].

What we must consider at this point is whether the development of software technology has
reached a stage of sophistication that will allow it to meet the seven FCS C2 software
requirements listed above. If so, the use of any less mature technology would be ill-advised. A
full analysis of these very broad requirements is beyond the scope of this paper. Instead, we
provide a very general review of the state-of-the-art in relation to these requirements and note
some obvious limitations with respect to the FCS environment. These limitations will then be
assessed against the capabilities of agent technology (Section 5 below).

3.1 Distributed Computing
Distributed computing or ubiquitous computing is the vision that devices ranging from super
computers to nanoscale processing units will be able to communicate and act in concert to solve
problems. The distributed computing approaches widely in use today include the Common
Object Request Broker Architecture (CORBA) [11], the Distributed Component Object Model
(DCOM) [12], and Remote Method Invocation (RMI) [13]. Each of these approaches provides a
way of executing a software function needed by one computer on a different computer. To be
executed remotely, this functionality places a number of constraints on the software. For
example, assume that a source object1 is attempting to execute some function on a target object;
for this to happen, the source object must have the capability to resolve the network and
computer memory address of the target object. Next, the source object must have detailed prior
knowledge of the functions (methods) and parameters available on the target object, as well as
the expected return information. There are also assumptions that these remote functions will be
accessed synchronously and that the network connections are available and permanent. If any of
these assumptions does not hold, then these distributed interactions will fail [14].

It is very unlikely that all of these above assumptions can be relied on in the dynamic FCS
environment. Therefore, a C2 system build on the current distributed object models is unlikely to
succeed without significant enhancement.

The communication topology of the current distributed computing models is another potential
limitation. This topology is typically a client-server model, in which the client sends a request to
a server and then waits for a response. In the FCS C2 network, messages will need to be drawn
from a richer model of interaction than the client-server model, since the structure and stability
of the network is likely to change at any time. A message may need to be broadcast to several
sites, relayed by several objects, retransmitted, or postponed, depending on the nature and status
of the network, which is a very complex challenge for the client-server model.

1 For ease of discussion, we will refer to software programs or functions as objects.

 Page 8 of 21

3.2 Fault Tolerance
Fault tolerance is concerned with making a distributed system more reliable by handling faults
within the system. A great deal of work has been done in this area, culminating in formal fault
tolerant models. These systems are usually described as having the properties of safety and
“liveness.” Safety properties consist of the set of acceptable system configurations, or invariants,
defining the operations that are legal within a distributed system. “Liveness” describes the notion
of the progress of a task within the distributed system. For example, safety properties may
require that an FCS vehicle cannot fire on friendly troops, while a liveness property may require
that a friendly troop notification will arrive at the appropriate FCS vehicle or force warrior.

Ideal fault tolerance provides that all safety and liveness properties are guaranteed to be satisfied
within a software program. When neither safety nor liveness properties are guaranteed, the
software program has no fault tolerance. If only safety properties can be guaranteed, then the
program will not violate system invariants but may not complete the task—i.e., the system will
not fire if a friendly troop notification has not been received, or in other words, the system is
failsafe. If only liveness properties are met, the system will fire, and may find out when the
notification arrives that friendly troops were fired on [15].

The key to fault tolerance is redundancy and the ability to detect and correct faults. These
concepts are mainly design principles that need to be enforced during the construction of
software. However, there are some practical technology limitations to fault tolerance based on
current distributed computing models. The client-server model, as described above, limits the
capability for message redundancy within a distributed system. A client passes a message to a
server and waits for a response. If the client, the message, or the server suffers a fault, the
transaction will fail. This can significantly limit the fault tolerant capability of current technology
in an FCS environment.

3.3 Security
Security ensures that data can be safely transmitted within the FCS system. The nodes within the
system can be authenticated, and data securely communicated. Existing security systems tend to
be static; consequently, security policies and mechanisms are very difficult to change once the
systems are installed. With systems that support a ubiquitous and/or mobile computing
environment, the fundamental problem that arises is to provide security that is expressive and
flexible enough to satisfy the specific needs of diverse applications [16].

Security operations are typically based on a security policy that defines which operations are
proper and should be allowed. A security policy usually specify access, accountability,
authentication availability, maintenance, violations reporting and response, and support
information about interaction with entities that are either unknown or known but non-local. If
such a policy can be enforced, and there are no violations, the system is secure by definition. The
goal is to create software than can enforce such a policy.

There is certainly existing software that meets some of the demands outlined above, but nothing
capable of supporting the size, distribution, and lifecycle requirements that will flow from the
relevant FCS scenarios. Software protecting individual computers—firewalls, intrusion detection
systems, password mechanisms, Public Key Infrastructures (PKI), and so on would make FCS
operations, relatively, but not absolutely secure in the sense outlined above. To meet FCS

 Page 9 of 21

demands, it is imperative that the FCS security system be unified, policy-based, and dynamic.
Current COTS systems are relevant but only marginally capable of meeting these requirements.

3.4 Mobile Code
The term “mobile code” typically refers to a capability whereby a combination of data, code, and
execution state is sent to another machine and executed on that machine through a general virtual
machine. The virtual machine may take the form of a distributed system layer, such as CORBA,
or as a computational environment, such as the Java Virtual Machine. Currently, there are three
design paradigms for a mobile code system: (1) a code-on-demand system allowing code to be
transmitted to the data, (2) a remote evaluation system allowing code and data to be moved to
another system, and (3) a mobile agent system allowing code, data, and state2 to be moved to
another system [17].

FCS levies very demanding requirements for mobile code. There is no guarantee that any node in
the C2 network will be available at any one time. Therefore, the design paradigms represented in
1 and 2 above provide limitations if the source node is no longer available to hold the code or
state of a mobile transaction. The third paradigm, mobile agents, will be discussed in the next
section.

Security—most notably, how to prevent malicious software from entering a system—is a major
issue with mobile code. A typical solution is to prevent state from being sent with the code—i.e.,
mobile code is generally executed in a very narrow computational space where the target
memory is not accessible and can only communicate with the source system. It appears that this
approach may not be viable in an FCS environment.

3.5 Information Fusion
Fusing data from different sources is a difficult problem. The most promising technique for
doing so appears to be the use of a metadata tag language such as Extensible Markup Language
(XML) [18]. With this approach a common ontology or set of XML tags is developed. Then
specific data is tagged using this common ontology and can then be combined with data from
other sources [19]. Kim argues that ontologies will be best for reducing uncertainty, while XML
will be most effective in reducing the complexity of the shared data [20].

This approach shows great promise. Unfortunately, tagging data does not necessarily ensure that
the data can be fused. There are many examples where it is technically impossible to fuse data
derived from different relative scales or with differing assumptions. The ultimate goal of data
fusion is for the software to understand and manipulate the data, which has been an open issue
for decades.

3.6 Information Analysis and Summary
After data are fused, there is likely to be a need to analyze the data for a wide variety of reasons.
Typically, this analysis will result in reducing the size of the data being analyzed. This provides
for faster processing and transmission of the data. There are a number of mathematical

2 State is a description of a partially completed process, including the values of all program variables and which step of the
process is the next to be executed. State information is necessary in order for another computer to complete a process that another
has begun.

 Page 10 of 21

techniques for analyzing and reducing data—feature extraction, dimensionality reduction,
principle component analysis, and cluster analysis, to name a few. These topics are orthogonal to
state-of-the-practice software methods but are very important to addressing the networked C2
challenge of FCS.

3.7 Decision Support
After data has been gathered, fused, and analyzed, this information would typically be used to
make military decisions. A number of decision-support methods and systems can be used to
perform this task. As with information analysis, decision support models are not dependent on
the state-of-the-practice software methods, yet are very important to addressing the networked C2
challenge of FCS.

3.8 Software Development Productivity
The proposed FCS networked C2 functionality will be very large and particularly complex by
today’s standards. The engineering effort to assemble such a resource is challenging in both
effort and risk. Object-oriented methods have been shown to produce simpler designs and
provide a greater capability for reuse than other methods. However, object-oriented technology
has not been shown to improve software development productivity in a commercial environment
[21]. While simpler designs are clearly desirable in building new software systems, the need for
improved productivity is a significant concern as well.

3.9 Software Development Challenges Posed by FCS
As is apparent from the preceding discussion, a number of challenging software requirements
that must be met to build any networked C2 system, much less the proposed FCS concept. We
have analyzed the functional requirements to produce a reasonable set of software characteristics
needed to create this system. We have then analyzed these software requirements to understand
the key technology challenges posed by these requirements, see Figure 3. From this figure, the
distributed computing requirement poses the greatest software challenge for the new FCS
system, while information fusion, information summary and analysis, and decision support are
tangential to software technology advances.

Software

Requirements

Software

Limitations D
is

tri
bu

te
d

C
om

pu
tin

g

Fa
ul

t T
ol

er
an

ce

M
ob

ile
 C

od
e

S
ec

ur
ity

In
fo

rm
at

io
n

Fu
si

on

In
fo

rm
at

io
n

A
na

ly
si

s
S

um
m

ar
y

D
ec

is
io

n
S

up
po

rt

S
of

tw
ar

e
P

ro
du

ct
iv

ity

Higher-level Interfaces X X

Asynchronous Interaction X

Sporadic Network Support X X X

Security X X

Peer-to-peer Models X X

Software Productivity X

 Page 11 of 21

Figure 3 A mapping of the software requirements to the
limitations of the current software technology

Our analysis indicates six keys software challenges in building this system:

1. Providing higher-level interfaces to distributed objects.
2. Allowing asynchronous object interaction.
3. Providing message support for sporadic network connections.
4. Providing secure object communication and information system operation.
5. Providing support for richer peer-to-peer programming models.
6. Increasing software development productivity.

In the next section we evaluate the suitability of agent technology against these six challenge
areas.

4 Agent Technology
Agent technology is an evolving paradigm that strives to create software that can mimic certain
human behavior. Agents are typically described as possessing human characteristics, for
example, agents are normally considered to be autonomous, adaptable, social, knowledgeable,
mobile, and reactive to name a few [22]. The focus of much discussion about agents is on the
characteristics of agents. While this can be a very useful abstraction for discussing agents, it does
not provide a strong means of objective comparison. For the purposes of this paper, we are more
interested in the computer science novelties of the technology; therefore, we will limit the
discussion of characteristics, and focus strongly on the comparative benefits of agent technology.

There are many proposed and deployed agent architectures. A representative architecture by
Sycara et al. [23] proposes planning, communication and coordination, scheduling, and
execution monitoring of agent activities. In this architecture, the agents have access to shared
information, typically implemented through a coordination model that can be domain specific or
domain independent. Another architecture description is offered by Griss et al. [24] who provide
a broad description of a general agent architecture where the architecture provides facilities for
locating and communicating with moving and unconnected agents, and for gathering information
about groups of agents. This architecture provides services that include support for mobility,
security, management, persistence, and naming of agents.

These architectures and most others highlight the communication and control aspects of agent
systems, which are typically provided by a general messaging paradigm where one agent can
communicate with one or several other agents. This messaging approach encapsulates the
messages that agents send and receive [22]. Object-oriented methods popularized the concept of
data encapsulation, which provides for simple software functions to access an object’s data.
These functions, not direct data access, are then used to retrieve and update this data. This
capability limits the software that must change when minor changes are made to the data. The
agent paradigm extends encapsulation from data to messages sent among agents. This capability
is provided through agent coordination models [25]. These models define how agents
communicate among themselves, and can be seen as coordinating communication based on the
time a message is sent (temporal) or the names of the target agents (spatial). These models
provide the ability for communication that is encapsulated and asynchronous with the use of

 Page 12 of 21

blackboards, and tuple space models and associated pattern-matching, such as Linda [26].
Agents that use a blackboard or Linda type coordination model provide a level of indirection for
agent communication. In other words, an agent sends a message to a blackboard, and those
subscribers to the blackboard retrieve the message. The agent that sent the message may have no
idea who actually receives it. This concept allows for asynchronous and encapsulated
communication among a collection of connected or disconnected agents, a capability that
currently not available in non-agent systems.

Another aspect of agent messaging is that these messages are typically written in an agent
control language [27] (ACL) such as KQML or the FIPA ACL. These languages provide a
structured means of exchanging information and knowledge among agents. ACLs provide
support for a higher-level communication protocol that currently does not exist with distributed
objects.

We will now review in detail how suitable agent technology is for the software development
challenges posed by FCS.

4.1 Higher level interfaces to distributed objects
Agent technology is based on a flexible messaging scheme and agent control languages. Agents
conceptually are connected to blackboards, not other agents. The encapsulation of messages
allows for an agent interfaces to change, requiring only minor modifications to a blackboard, not
to all calling agents [22]. This capability provides for a more robust interface than is currently
available in distributed object systems.

Another advantage of agent messaging is that ACLs provide the ability to pass propositions,
rules, actions, and states among agents. This means that messaging is not merely a way of
activating a function on a remote agent, but provides a way of sending information to another
agent. The agent can then decide what to do about this information, if anything. This information
can be used to describe what requirements need to be met for an agent to take action, what states
the sender and receiver will be in after the action takes place, or what states the agents will be in
when the overall transaction is complete [27]. Information sent from one agent to another may
also be informative or declarative, having nothing to do with instructing the receiving agent to
take action.

The challenge of implementing such an agent interface is selecting both a messaging architecture
and an ACL. Currently there is not a universally accepted messaging architecture or ACL. For an
agent system to take advantage of this high-level interface, there must be very specific and
precise specifications on how agents will communicate, and on the precise syntax of the ACL.

4.2 Asynchronous object interaction
Griss et al. [24] points out that agent systems typically have simple interfaces, and derive
capability from loose coupling and asynchronous messaging. This capability of asynchronous
messaging is results from the ability of a message to be sent to and retrieved through a loosely
coupled temporal agent coordination model. Cabri et al. [25] reference two coordination models
that provide asynchronous agent communication. The first model is a blackboard-based model
that provides a shared area where agents can send and retrieve messages. A message is posted to
a blackboard by an agent, and other agents have the ability to read the message posted by that
agent. The sending agent’s identifier is used by other agents to determine whether to retrieve the

 Page 13 of 21

message. A blackboard-based system can be considered asynchronous; however, knowledge of
the agent identifiers is required. The second model is based on a Linda coordination model
approach. These models define a messaging protocol which is made up of a tuple of information,
for example a tuple may include the data format, the date of creation, the classification, or a list
of keywords. These tuples are then placed in a shared area, such as a blackboard. Agent can
access these messages, not based on agent identifiers, but on a query of the tuple information,
i.e., an agent may retrieve all messages created yesterday with the “Taliban” keyword. This type
of model is asynchronous, and does not require knowledge of the agent identifier.

Both of these types of models are mature, and widely used in agent systems today. They provide
the type of asynchronous behavior that is required by the FCS system. Clearly, a system that uses
a single blackboard for all agent communication is exposed to security and performance failures.
An operational agent system would require multiple blackboards supporting redundancy to
provide a more fault tolerant system.

4.3 Message support for sporadic network connections
Providing software that can effectively function over a faulty network is a very challenging, if
not impossible problem. The advantage that agent technology provides in this type environment
is the flexibility and redundancy of the communication paths among agents, and the ability for
agents to change location. Vogler et al. [28] propose a distributed transaction model using a two-
phase commit protocol to verify that an agent message has been delivered. This very well known
approach can provide a means of ensuring that an agent transaction has successfully or
unsuccessfully completed. The agent coordination model must support the ability for an agent to
store undelivered messages within the agent, or support the ability to rollback the transaction, if
synchronous transactions are required. If a transaction has not completed successfully, then a
number of network or graph theory algorithms can be used to determine a viable path through the
network, and the transaction can be attempted again, or the agent can move to another location
and try again. If a physical path cannot be found then the transaction is not possible.

The messaging architecture and mobility of agents can be effectively used to communicate over
a sporadic network, however, there is a point where the network can degrade to a point where
agent communication is no longer possible. Distributed transaction protocols (DTP) are very
useful for verifying the success of transactions, and can be used to ensure network security,
however, adding this capability can limit the performance of the overall system.

4.4 Secure Communication and Information Operations
As Abadi [29] notes, it is practically impossible to construct a truly secure information system.
Communications are secure if transmitted messages can be neither affected nor understood by an
adversary, likewise, information operations are secure if information cannot be damaged,
destroyed, or acquired by an adversary.

Most agree that security in a distributed system should be enforced through system wide security
policies. There policies are often static, and difficult to modify and enforce with existing
technology [16]. Agents have demonstrated that they can enforce a security policy defining what
must be done and what must not be done when information is moved (including
communication), stored, created, or destroyed. Agent technology is valuable in this context
because it provides multiple, standalone, persistent processes that can act at high speeds to

 Page 14 of 21

ensure that all the rules are always followed. Encapsulated instructions concerning what actions
to take under what circumstances enables agents to execute very complex operations, enabling
agents to participate in complex collaborative security protocols such as key updating and
multiparty authorization.

There is no overt reason agents cannot be designed to provide a very secure information
management system within the FCS environment. The challenge for FCS is in defining the FCS
system-wide security policy and designing agents able to enforce it without undo complexity or
performance limitations.

4.5 Peer-to-peer programming models
Through the use of blackboard and Linda type coordination models, the programming model of
agents can be very general. Any number of agents can send messages to one or many
blackboard(s), and any number of agents can receive messages from one or many blackboard(s).
This provides the building blocks to create virtually any network topology that can be defined,
and allows for very broad scalability of the network. Care must be taken in defining the
bandwidth, messaging rates, and processing requirements of the network. These topologies will
require tuning to enhance fault tolerance and performance.

4.6 Increasing software development productivity
There are indications that agent technology may provide some software development
productivity improvement [24]. While there does not appear to be any empirical evidence to
support this to date, the proposed theory is that agents increase the level of software reuse.
Agents are software components that have their messaging, functionality, and location
encapsulated, which is believed will increase the level of software reuse, thus increasing
productivity. Likewise, if standard messaging protocols and ACLs can be defined, the agent
development teams may require less communication overhead since the interfaces are far richer
than with traditional programming.

5 Specific Agent Projects and Technological Readiness
In this section we briefly review a handful of existing agent-based systems that appear to address
FCS C2 requirements. This analysis provides a brief glimpse into the state-of-the-practice of
agent technology. This review looks at the published reports of the systems, not the actual
systems themselves. The assessment of technology readiness level (TRL), see Appendix A, is
performed strictly from the open literature, and may not accurately reflect the TRL level of the
actual system.

5.1 Cooperating Agents for Specific Tasks (CAST)
Principal investigator: Kenneth Whitebread
Affiliation: Lockheed Martin Advanced Technology Laboratories
URL: http://www.atl.external.lmco.com/indexlist.html

Lockheed Martin has significant experience developing agent-based systems for military
applications. We focus here on Cooperating Agents for Specific Tasks (CAST), which is
affiliated with the DARPA Control of Agent-Based Systems (CoABS) program. The CAST
system performed C2 functions for Theater Air Missile Defense (TAMD) during USN Fleet

 Page 15 of 21

http://www.atl.external.lmco.com/indexlist.html

Battle Experience. The CAST system manages large amounts of distributed information and
provides COP and situation awareness data in the TAMD domain supporting naval C2 of
surveillance and strike assets. CAST does not support large numbers of distributed information
sources and links, and scaling properties are unknown. However, Lockheed Martin Advanced
Technology Laboratories also developed and deployed the Domain Adaptive Information system
(DAIS) with the Army 201st Military Intelligence Brigade. DAIS was built to query
heterogeneous databases over unreliable low-bandwidth networks. Although it is safe to say that
neither of these systems would be capable of meeting FCS C2 requirements, according to their
information, both perform aspects of these requirements very well and both are at high TRL:
CAST is TRL 7 and DAIS is TRL 9.

5.2 Dartmouth Agent (D’Agent) Multidisciplinary University Research Initiative
(MURI) Demonstration
Principal investigator: Robert Gray
Affiliation: Dartmouth College
URL: http://actcomm.thayer.dartmouth.edu/

The D’Agent MURI demonstration focused on a small number of distributed agents deployed in
support of low-intensity-conflict urban operations, specifically location and arrest of a specific
individual. The agents operated within a dynamic network maintaining two-way C2 connectivity
among mobile soldiers and a static command post in a realistic outdoor urban environment. The
commercial off-the-shelf (COTS) hardware used in the demonstration would not serve in an
FCS mission environment, and it is not clear whether the software would scale; the number of
participants in the three demonstrations have been in the low tens of individuals. However, good
measures of performance and logs were taken, the entirety of which can be seen online at the
above URL. This work falls at TRL 6. Achievement of TRL 7 would require mission-relevant
hardware and a more realistic Military Operations in Urban Terrain (MOUT)–like test
environment.

5.3 Standard Agent Architecture (SAA) Development Program
Principal investigator: Steven Goldsmith
Affiliation: Sandia National Laboratories Advanced Information Systems Laboratory
(AISL)
URL: http://www.aisl.sandia.gov/

Sandia’s Advanced Information Systems Laboratory (AISL) has focused on providing agent
technology to cooperatively manage and protect complex operations on critical data. The
Standard Agent Architecture (SAA) program is unusual in that it uses no COTS agent
technology but instead relies on a unique framework constructed in-house from first principles.
SAA agents use KQML and HTML to communicate with non-SAA entities. Recent work is
aimed at in-house deployment of the Boxer cybersecurity application that will detect specific
types of otherwise undetectable anomalous transactions in high-volume TCP/IP traffic (TRL 5).
Initial deployment will field only a few agents; however, Boxer is designed for expansion. AISL
will also demonstrate C2 of a mixed collective of nonrobotic agents, robots controlled by on-
board agents, and semiautonomous non-agent robots near the end of 2002 (TRL 4). AISL has
demonstrated multi-agent execution of several advanced cryptographic algorithms specifically
designed to protect against stealthy penetration and individual system failure or cooption (TRL

 Page 16 of 21

http://actcomm.thayer.dartmouth.edu/
http://www.aisl.sandia.gov/

4). When deployed, the Boxer system will be at TRL 6 (not technically TRL 7 because neither
the hardware nor the personnel are military), but Boxer will be providing operational information
to computer security operations personnel in an operational environment.

5.4 UltraLog Program
Principal investigator: Mark Greaves (program manager)
Affiliation: DARPA/IXO
URL: http://www.ultralog.net/; http://www.cougaar.org/sitemap.html

UltraLog is a DARPA program whose expressed goal is to improve the reliability and robustness
of the Cougaar architecture by eventually deploying at least 1000 simultaneously functioning
agents providing military logistics support in a major regional contingency. The primary
contractor providing the Cougaar architecture and most of the development is Bolt, Beranek, and
Newman (BBN). We would place UltraLog at TRL 6 or 7; there is room for interpretation as to
whether the demonstration environment is an “operational” environment.

In any case, UltraLog at this time is focused on logistics, and is able to construct an operational
plan to move large quantities of material to a given location. This involves several dozen
distributed agents (i.e., the agents are not co-located) trading information about constraints,
capabilities, commitments, and so on to arrive at a workable plan. This work begins to show that
agent systems large enough to support FCS operations are possible. The agents are general-
purpose with specializing behavior provided by “plug-ins,” which are code modules written by
the application programmers. BBN has also done substantial work to prepare Cougaar-based
agents for FCS-like operation of unattended sensors and battlefield logistics.

5.5 Virtual Information Processing Agent Research (VIPAR)
Principal investigator: Thomas E. Potok
Affiliation: Oak Ridge National Laboratory
URL: http://www.csm.ornl.gov/~v8q/Homepage/Projects/vipar.htm

The VIPAR project uses the Oak Ridge National Laboratory (ORNL) Oak Ridge Mobile Agent
Community (ORMAC) to address challenges facing the intelligence community for the U.S.
Pacific Command (USPACOM). ORNL has used ORMAC to develop agent-based systems for
the U.S. 6th Fleet, the Defense Logistics Agency, Lockheed Martin, and the Department of
Energy. ORMAC is a blackboard based agent framework that uses FIPA compliant messaging,
and supports full agent mobility.

The VIPAR system quickly gathers and organizes massive amounts of information, up to 10,000
documents, then distills that information into a form directly and explicitly amenable for use by
an intelligence analyst. This system is deployed and in use at USPACOM. The USPACOM
commander in chief Admiral Blair calls VIPAR “A tremendously successful project” where
“Software agents … lead to substantially improved analytical products.” The USPACOM
Science and Technology Advisor calls VIPAR “a grand slam home run!” the “first time we've
seen information discovery and knowledge management software working at HQ USCINCPAC
operationally.” This system is at TRL level 9, however, it only addresses a small part of the C2

requirements for FCS.

 Page 17 of 21

http://www.ultralog.net/
http://www.cougaar.org/sitemap.html
http://www.csm.ornl.gov/~v8q/Homepage/Projects/vipar.htm

6 Discussion
The analysis in this paper begins by deriving a set of software requirements for the FCS
networked C2 system based on a set of TRADOC functional requirements. This set of software
requirements is not an exhaustive set for C2, however, from a military point of view provides a
credible and representative list of the challenges awaiting the software designers of FCS.

A comparison of these requirements with the capabilities of existing technology is very
revealing. Several of the limitations of existing technology bring into question whether it is
capable of producing a C2 system for FCS. The main limitations of existing technology are low-
level interfaces, synchronous interactions, requirements for continuous network availability,
limited redundancy, and limited productivity improvements. Clearly, the current technology
would require major enhancements to be able to support an FCS environment.

Reviewing the limitations of existing technology against agent technology, we are able to assess
the suitability of agent technology in the FCS environment. This assessment highlights the main
strength of agent technology within an FCS environment, which are the messaging and
coordination models that agents use. These models enable better solutions to the FCS challenges
than do existing technology. The issue however, is to determine whether the theoretical
capabilities of these models can be realized in practice.

We provide a brief review of some relevant agent work in related areas. This is a paper analysis
that may not fully represent the actual systems, however, there appears to be ample evidence that
agent systems have been used to solve some of the problems faced by FCS.

There are two main questions that this analysis raises, 1) should FCS be built on enhancements
to existing technology or on an agent architecture? 2) Is agent technology mature enough to be
used for a project the size and complexity of FCS? The first question deals more with an
economic analysis than a technical analysis. If current technology is enhanced to solve some of
its limitations, the resulting system will most likely look like existing agent systems. It does not
make much sense to reinvent what already exists. The maturity of agent technology is an issue.
There is not a reference agent system that supports the complexity or scale of the proposed FCS
system. On the other hand, it is pretty clear that existing technology will not be able to solve this
problem. Looking strictly at the success of the FCS project, it would appear that agent systems
will perform at least as well as traditional systems, but with the promise of doing much better.
Therefore, we recommend the use of agent technology for the FCS C2 system.

There are some issues not related to software that must be addressed as well—namely, security,
information analysis and summary, and decision support. Agent technology can clearly support
these tasks, but the technology does not explicitly provide these capabilities, and these are
challenging problems. If these problems cannot be adequately solved, regardless of whether or
not agent technology is used, the FCS system will be limited.

We recommend the use of prototypes and experimentation with agent technology to reduce the
software development risk of FCS, specifically in the areas of scalability, mobility, and security.
The resulting information will provide a clearer picture of the expected benefits of agent
technology.

 Page 18 of 21

 Page 19 of 21

7 Conclusion
 The U.S. Army is transforming through advanced technologies to significantly improve its war
fighting capability. The Army is looking for technologies that can provide dramatic
improvements over existing capabilities, yet are reliable enough to provide a fielded system. Our
study assesses both the potential improvements, and the reliability of using software agent
technology for the network-centric C2 portion of FCS. The emerging FCS concept of C2
activities is a dynamic network of moving vehicles that will gather and analyze data from a vast
array of battlefield sensors. This ad hoc network will have vehicles entering and leaving the
network at unpredictable times. This system must be highly reliable and highly secure, with the
ability to scale to process massive amounts of data. This proposed FCS C2 network must be able
to process this information rapidly and deliver the right information to the right locations and
people at the right time.

Achieving a networked C2 capability will require significant advances in existing software
technologies. Key experts have proposed agent technology as a potential solution to this
challenge. To analyze the capabilities of agent technology, we have developed a set of software
requirements of FCS based on military requirements. These requirements are then reviewed
against the current computer science literature to highlight limitations and challenge areas. These
challenge areas are then reviewed against agent technology to illustrate the comparative benefits
of this technology in an FCS environment.

From this analysis we find that the networked C2 requirements of FCS are beyond the capabilities
of existing technologies in scalability, mobility, and security. Agent technology provides a
number of significant advantages in these areas, due to much stronger messaging and
coordination models, and theoretically is much better suited to the FCS challenge that is existing
technology. There are some mature agent systems that meet some of the requirements of FCS,
but there is currently no single agent system that meets the scale and complexity proposed by
FCS.

In summary, agent technology will clearly perform at least as well as traditional technology in an
FCS environment, but with the promise of solving a number of existing technology limitations.
Our theoretical and system level analysis shows that agent technology has the capability to
support the significant networked C2 requirements of FCS, requirements that likely pose
unachievable challenges with current technology. In other words, agent technology is the best
technology, perhaps the only technology, for delivering a viable C2 system for FCS. To further
strengthen this analysis, we recommend proof of principle experiments to verify and validate the
results of this analysis.

8 References

[1] Col. William Johnson, Program Manager, “Future Combat Systems,” DARPA/Army Collaborative Future
Combat Systems Demonstration Program, at http://www.arpa.mil/ tto/programs/fcs.html, accessed 4/30/02.

[2] T. M. Carrico, “Vision and Concepts: Agent-Based Command and Control for FCS,” The UltraLog White
Paper Series, Darpa Technical Report.

[3] DARPA/Army Collaborative Future Combat Systems Demonstration Program, “FCS Public Briefings,” at
http://www.arpa.mil/fcs/public.html, accessed 4/30/02.

[4] T. Lee and S. Ghosh, “Simulating Asynchronous, Decentralized Military Command and Control,” IEEE
Computational Sciences & Engineering 3, no. 4 (1996): 69–79.

 Page 20 of 21

[5] U.S. Army Training and Doctrine (TRADOC) Briefing, given at Eatontown, N.J. FCS Integrated Study

Team Workshop, December 2001.
[6] G. Fischer and J. Ostwald, “Knowledge Management: Problems, Promises, Realities, and Challenges,” IEEE

Intelligent Systems 16, no. 1 (2001): 60–72.
[7] T. Demarco and P. J. Plauger, Structured Analysis and System Specification, Prentice Hall, New York, 1985.
[8] G. Booch, Object-Oriented Design with Applications, Benjamin/Cummings Publishing, Redwood City,

Calif., 1991.
[9] R. S. Chin and S. T. Chanson, “Distributed, Object-Based Programming Systems,” ACM Computing Surveys

23, no. 1 (1991).
[10] T. Thorn, “Programming Languages for Mobile Code,” ACM Computing Surveys 29, no. 3 (1997).
[11] See the Object Management Group’s (OMG’s) CORBA web site, at http://www.corba.org, accessed 4/30/02.
[12] M. Horstmann and M. Kirtland, “DCOM Architecture,” July 23, 1997, at http://msdn.microsoft.com/

library/default.asp?url=/library/en-us/dndcom/html/msdn_dcomarch.asp, accessed 4/30/02.
[13] “Java Remote Method Invocation - Distributed Computing for Java,” White Paper, at

http://java.sun.com/marketing/collateral/javarmi.html, accessed 4/30/02.
[14] K. Geihs, “Middleware Challenges Ahead,” IEEE Computer 34, no. 6 (2001): 24–31.
[15] F. Gartner, “Fundamentals of Fault-Tolerant Distributed Computing in Asynchronous Environments,” ACM

Computing Surveys 31, no. 1 (1999): 1–26.
[16] Z. Liu, P. Naldurg, S. Yi, R. Campbell, and M. Mickunas, “Pluggable Active Security for Active Networks,”

in Proceedings of the Twelfth IASTED International Conference on Parallel and Distributed Computing and
Systems (PDCS 2000), November 2000.

[17] A. Fuggetta, G. Picco, and G. Vigna, “Understanding Code Mobility,” IEEE Transactions on Software
Engineering 24, no. 5 (1998): 342–361.

[18] Extensible Markup Language (XML) 1.0 (Second Edition), W3C Recommendation 6 October 2000,
http://www.w3.org/TR/2000/REC-xml-20001006.

[19] T. Potok, M. Elmore, J. Reed, and N. Samatova, “An Ontology-based HTML to XML Conversion Using
Intelligent Agents,” in Proceedings of the 35th Hawaii International Conference on System Sciences, January
(2002).

[20] H. Kim, “Predicting How Ontologies for the Semantic Web Will Evolve,” Communications of the ACM 45,
no. 2 (2002): 48–54.

[21] T. Potok, M. Vouk, and A. Rindos, “Productivity Analysis of Object-Oriented Software Development in a
Commercial Environment,” Software—Practice and Experience 29, no. 10 (1999): 833–847.

[22] N. Jennings, K. Sycara and M. Wooldridge “A Roadmap of Agent Research and Development” International
Journal of Autonomous Agents and Multi-Agent Systems 1 no. 1 (1998): 7-38.

[23] K. Sycara, A. Pannu, M. Williamson, and D. Zeng, “Distributed Intelligent Agents,” IEEE Expert 11, no. 6
(Dec. 1996): 36-46

[24] M. Griss and G. Pour, “Accelerating Development with Agent Components,” IEEE Computer 34 no. 5 (May
2001): 37-43.

[25] G. Cabri, L. Leonardi, and F. Zambonelli, “Mobile-Agent Coordination Models for Internet Applications,”
IEEE Computer 33, no. 2 (Feb 2000): 82-89

[26] D. Gelernter and N. Carriero, “Coordination Languages and Their Significance,” Communications of the
ACM 35 no. 2 (Feb. 1992): 96-107.

[27] Y. Labrou, T. Finin, and Y. Peng, “Agent Communication Languages: The Current Landscape,” IEEE
Intelligent Systems 14 no. 2 (March 1999): 45-52.

 [28] H. Vobler, T. Kunkelmann, and M. Moschgath, “An Approach for Mobile Agent Security and Fault
Tolerance using Distributed Transactions,” Proceedings of the International Conference on Parallel and
Distributed Systems (1997): 268-274.

[29] M. Abadi, “Secrecy by Typing in Security Protocols,” Journal of the ACM 46, no. 5 (Sept 1999): 749-786.

 Page 21 of 21

[30] J. Mankins “Technology readiness Levels: A White Paper”; Advanced Concepts Office, NASA Office of

Space Access and Technology; (April 1995);
http://see.msfc.nasa.gov/see/WorkShop/TRL%20Descriptions.doc

http://see.msfc.nasa.gov/see/WorkShop/TRL%20Descriptions.doc

Suitability of Agent Technology
for Military Command and

Control in the Future Combat
System Environment

Dr. Thomas Potok and Dr. Andy Loebl
Computational Sciences and Engineering Division

Oak Ridge National Laboratory

Laurence Phillips and Robert Pollock
Advanced Information and Control Systems

Sandia National Laboratories

2

Applied Software Engineering
Research Group

The 2020 Army Challenge

Voice

Text
Signal

Image
Text
Signal

Video
Voice

Voice
Image
Video

Voice
Signal

Voice
Image
Video

Voice
Signal
Image

Unit spotted
Missile Fired
Sarin Detected

3

Applied Software Engineering
Research Group

Agent Vision

Voice

Text
Signal

Image
Text
Signal

Video
Voice

Voice
Image
Video

Voice
Signal

Voice
Image
Video

Voice
Signal
Image

Intelligent
Agent

Intelligent
Agent

Intelligent
Agent

Intelligent
Agent

Intelligent
Agent

Intelligent
Agent

Intelligent
Agent

Intelligent
Agent

• Multiple T-72s tanks; Possible sarin
filled 122M rockets (Picture)

• Coordinates: 33:14:23N,
44:22:69E (Map)

• Apache Longbow can engage in
under 15 minutes (COP)

Apache Longbow destroy the
intruder

Forward forces to MOPP4

4

Applied Software Engineering
Research Group

Issues

o Can current software technology solve the
FCS Command and Control problem?

o Are software agents a better approach to
solving this problem that traditional
technology?

5

Applied Software Engineering
Research Group

Qualitative Approach

o Derive the needed software capabilities from
the TRADOC FCS C2 requirements

o Review these capabilities against the current
software technology to determine the
limitations of the current technology

o Review the limitations of current technology
against the capabilities agents technology

6

Applied Software Engineering
Research Group

FCS Requirements

o Common Operational Picture
o Mobile Command
o Mission-Centric IS
o Decision Support/Planning
o 3D Visualizations
o Continuous Mission Planning
o Synchronized C2

7

Applied Software Engineering
Research Group

Functional and Software Requirements
Software

Requirements

TRADOC
Requirements D

is
tri

bu
te

d
C

om
pu

tin
g

Fa
ul

t T
ol

er
an

ce

S
ec

ur
ity

M
ob

ile
 C

od
e

In
fo

rm
at

io
n

Fu
si

on

In
fo

rm
at

io
n

An
al

ys
is

 S
um

m
ar

y

D
ec

is
io

n
S

up
po

rt

S
of

tw
ar

e
Pr

od
uc

tiv
ity

Common Operational Picture X X X X X X X

Mobile Command X X X X

Mission-Centric IS X X X X X X

Decision Support/Planning X X X X X

3D Visualizations X

Continuous Mission Planning X X X

Synchronized C2 X X X X

Figure 1 A mapping of TRADOC FCS functional requirements
to expected software requirements.

X

8

Applied Software Engineering
Research Group

Needed Software Capabilities
o Distributed computing over an unreliable, ad hoc, dynamic physical

network
o Fault tolerance over a system in which, at any given time, it is unclear

what nodes are available within the network
o Network security and accessibility. Warfighters will need immediate

access to the network, but adversaries need to be prevented from
accessing or corrupting it.

o Data fusion. Data from a wide range of systems and sensors will need
to be correctly related

o Information analysis and summary of enormous amounts of data from
the C2 network on the basis of user needs

o Decision support. A network capable of supporting C2 decision
making

o Software development improvements to reduce the complexity and
risk in creating the proposed system

9

Applied Software Engineering
Research Group

Current Software Limitations
Software

Requirements

Software

Limitations D
is

tri
bu

te
d

C
om

pu
tin

g

Fa
ul

t T
ol

er
an

ce

M
ob

ile
 C

od
e

S
ec

ur
ity

In
fo

rm
at

io
n

Fu
si

on

In
fo

rm
at

io
n

A
na

ly
si

s
S

um
m

ar
y

D
ec

is
io

n
S

up
po

rt

S
of

tw
ar

e
P

ro
du

ct
iv

ity

Higher-level Interfaces X X

Asynchronous Interaction X

Sporadic Network Support X X X

Security X X

Peer-to-peer Models X X

Software Productivity X

Figure 3 A mapping of the software requirements to the
limitations of the current software technology

10

Applied Software Engineering
Research Group

Limitations
o Providing higher-level interfaces to distributed

objects.
o Allowing asynchronous object interaction
o Providing message support for sporadic network

connections
o Providing secure object communication and

information system operation
o Providing support for richer peer-to-peer

programming models
o Increasing software development productivity

11

Applied Software Engineering
Research Group

Agent Definition

o Agents are typically described as possessing
human characteristics,

autonomous, adaptable, social, knowledgeable,
mobile, and reactive, …

o For the purposes of this study,
we are more interested in the computer science
novelties of the technology
focus strongly on the comparative benefits of agent
technology

12

Applied Software Engineering
Research Group

Representative Agent Architectures

o Sycara et al. [i] proposes planning, communication and
coordination, scheduling, and execution monitoring of agent
activities.

Agents access shared information through a coordination model that
can be domain specific or domain independent.

o Griss et al. [ii] who provide an architecture for locating and
communicating with moving and unconnected agents, and for
gathering information about groups of agents.

This architecture provides services that include support for mobility,
security, management, persistence, and naming of agents.

[i] K. Sycara, A. Pannu, M. Williamson, and D. Zeng, “Distributed Intelligent Agents,” IEEE Expert 11, no. 6
(Dec. 1996): 36-46

[ii] M. Griss and G. Pour, “Accelerating Development with Agent Components,” IEEE Computer 34 no. 5 (May
2001): 37-43.

13

Applied Software Engineering
Research Group

Agent Novelty

o Communication and control aspects of agent systems
Peer-to-peer topology
Agent coordination models that provide encapsulated and
asynchronous messaging with the use of blackboards, and
tuple space models and associated pattern-matching
High-level messages are typically written in an agent control
language (ACL) such as KQML or the FIPA ACL. These
languages provide a structured means of exchanging
information and knowledge among agents.

14

Applied Software Engineering
Research Group

o Traditional
Client-server
Low-level messages
Synchronous
Can not do the job!

o Agent breakthroughs
Peer-to-peer topology
Blackboard
coordination model
Encapsulated
messaging
High-level message
protocols

Client Server

Intelligent
Agents

Intelligent
Agents

Intelligent
Agents

Function(Parameters)

Return(Parameters)

Latest on bin laden?

He dead.
In Pakistan
Unknown

Whiteboard

Message
Reply

Traditional Software

Agents Intelligent
AgentsIntelligent

Agents

Intelligent
AgentsIntelligent

Agents

Intelligent
AgentsIntelligent

Agents

Why Agents?

15

Applied Software Engineering
Research Group

Agents against the limitations
o Providing higher-level interfaces to distributed objects.

Agents support
No universally accepted ACL standard

o Allowing asynchronous object interaction
Agents support
Performance of large blackboard systems unclear

o Providing message support for sporadic network connections
Agents support
Need store and forward, and rollback capabilities

o Providing secure object communication and information system
operation

Agents support
How easily agents can be “turned” is an issue

o Providing support for richer peer-to-peer programming models
Agent Support
Topologies much be carefully built to ensure performance

o Increasing software development productivity
There may be improvements through reuse, but no evidence to
support this

16

Applied Software Engineering
Research Group

So should agents be used for C2?

o Good news:
Agents appear to have several technological advantages over
traditional programming, main in communications with other
agents
This clearly would benefit FCS, or any large distributed
software project

o Bad news:
Traditional software has major limitations in an FCS
environment, and my not be suitable.
Agent technology may be suitable, but there are no large
reference systems to validate this.

17

Applied Software Engineering
Research Group

Recommendations

o Large-scale experimentation is needed to
validate an agent architecture for FCS C2.

o Main areas:
Scalability
Survivatibility
Security

18

Applied Software Engineering
Research Group

Conclusion

o Traditional technology need significant
enhancement to meet the needs of FCS

o Agent technology is the best suited technology
for FCS, but need to be validated though
experimentation

19

Applied Software Engineering
Research Group

Contact Information

o Contact Information

Thomas E. Potok, Ph.D.
Potokte@ornl.gov
865-574-0834

mailto:Potokte@ornl.gov

	130
	Abstract
	Introduction
	Background
	Command and Control (C2) Evolution
	C2 Requirements
	C2 Requirements Analysis

	State-of-the-Art Software Technology
	Distributed Computing
	Fault Tolerance
	Security
	Mobile Code
	Information Fusion
	Information Analysis and Summary
	Decision Support
	Software Development Productivity
	Software Development Challenges Posed by FCS

	Agent Technology
	Higher level interfaces to distributed objects
	Asynchronous object interaction
	Message support for sporadic network connections
	Secure Communication and Information Operations
	Peer-to-peer programming models
	Increasing software development productivity

	Specific Agent Projects and Technological Readiness
	Cooperating Agents for Specific Tasks (CAST)
	Dartmouth Agent \(D’Agent\) Multidisciplinary
	Standard Agent Architecture (SAA) Development Program
	UltraLog Program
	Virtual Information Processing Agent Research (VIPAR)

	Discussion
	Conclusion
	References

	A130
	Suitability of Agent Technology for Military Command and Control in the Future Combat System Environment
	The 2020 Army Challenge
	Agent Vision
	Issues
	Qualitative Approach
	FCS Requirements
	Functional and Software Requirements
	Needed Software Capabilities
	Current Software Limitations
	Limitations
	Agent Definition
	Representative Agent Architectures
	Agent Novelty
	Why Agents?
	Agents against the limitations
	So should agents be used for C2?
	Recommendations
	Conclusion
	Contact Information

	130
	Abstract
	Introduction
	Background
	Command and Control (C2) Evolution
	C2 Requirements
	C2 Requirements Analysis

	State-of-the-Art Software Technology
	Distributed Computing
	Fault Tolerance
	Security
	Mobile Code
	Information Fusion
	Information Analysis and Summary
	Decision Support
	Software Development Productivity
	Software Development Challenges Posed by FCS

	Agent Technology
	Higher level interfaces to distributed objects
	Asynchronous object interaction
	Message support for sporadic network connections
	Secure Communication and Information Operations
	Peer-to-peer programming models
	Increasing software development productivity

	Specific Agent Projects and Technological Readiness
	Cooperating Agents for Specific Tasks (CAST)
	þ䐀愀爀琀洀漀甀琀栀 䄀最攀渀琀 尀⠀䐠ᤀ䄀最攀渀琀尀⤀ 䴀甀氀琀椀搀椀猀挀椀瀀氀椀渀愀爀礀 
	Standard Agent Architecture (SAA) Development Program
	UltraLog Program
	Virtual Information Processing Agent Research (VIPAR)

	Discussion
	Conclusion
	References

	A130
	Suitability of Agent Technology for Military Command and Control in the Future Combat System Environment
	The 2020 Army Challenge
	Agent Vision
	Issues
	Qualitative Approach
	FCS Requirements
	Functional and Software Requirements
	Needed Software Capabilities
	Current Software Limitations
	Limitations
	Agent Definition
	Representative Agent Architectures
	Agent Novelty
	Why Agents?
	Agents against the limitations
	So should agents be used for C2?
	Recommendations
	Conclusion
	Contact Information

